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The onset of convection in shear flow driven by lateral heating and also uniformly 
heated from below is investigated numerically by Galerkin’s method. Stress-free as 
well as rigid, perfectly conducting boundaries are considered. The analysis is valid for 
small and moderate Prandtl numbers. The magnitude of the lateral basic temperature 
gradient may be expressed by a dimensionless Grashof number G ,  while the uniform 
heating from below is represented by a Rayleigh number Ra. Depending on the values 
of G, Ra and the Prandtl number Pr, a variety of interesting situations arise. In  
particular it is demonstrated that the form of the most unstable mode, i.e. whether 
it is a roll with axis aligned along the basic flow (a longitudinal roll) or one with axis 
normal to the basic flow (a transverse roll), depends on the value of the Prandtl 
number. For smell values of G, the marginally stable disturbances are found to be 
steady, while for larger values of G, oscillatory instability occurs. For all values of 
G considered here (G 5 3000), computations of the energy balance for the margin- 
ally stable disturbances show that the main instability mechanism is of thermal 
origin, while the effect of shear may be important in selecting the preferred mode of 
disturbance. 

1. Introduction 
The stability of thermally driven shear flow has not attracted much attention in the 

literature, despite the variety of geophysical and technical problems in which this 
type of flow occurs; see the recent review by Kelly (1977). The basic flow itself, in its 
simplest form, is governed by a balance between vorticity due to  horizontal density 
variations, and viscous diffusion of vorticity . Large-scale turbulent analogues in 
Nature include the atmospheric ‘sea breeze’ (Walsh 1974; Neuman & Mahrer 1974) 
and flows in estuaries and coastal waters caused by the discharge of pollutants from 
urban districts or waste water from nuclear or fossil electric power generation (Cor- 
mack, Stone & Leal 1975). 

Hart (1972) investigated theoretically the stability of this kind of circulation 
(sometimes called a Hadley circulation in meteorology) on the assumption that the 
ratio of the height to the length was small. The existence of such a basic flow was 
demonstrated experimentally by Imberger (1974), who found that the flow in the 
central part of a side-heated shallow container was approximately rectilinear with a 
constant horizontal temperature gradient. From his stability analysis, Hart (1 972) 
found that, for sufficiently large values of the non-dimensional horizontal temperature 
gradient, instability would occur in the form of two-dimensional disturbances with 
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axes normal to the basic flow (transverse rolls) for all values of the Prandtl number. 
Hurle, Jakeman & Johnson (1974), on the other hand, observed longitudinal oscil- 
latory rolls (rolls with axes aligned with the flow) in a side-heated container filled with 
a low Prandtl number fluid. In  the latter case, however, the geometry of the model is 
likely to have affected the selection of mode, and also the measurement technique 
may not have been sensitive enough to detect transverse disturbances; see the dis- 
cussion by Gill (1974) on this and related experiments. 

Some effects of horizontal non-uniform heating were demonstrated experimentally 
by Koschmieder ( 1966) in a shallow cylindrical container whose upper boundary was 
held at  a constant temperature while the lower had a radial temperature gradient. 
Under subcritical conditions one large roll was observed but this broke up into axially 
symmetric rolls of different sizes and circulations when the vertical temperature 
difference was sufficiently increased. A closely similar experiment in a rectangular 
cavity has been reported by Berkovsky & Fertman (1970). 

Weber (1973) separated the effects of side heating and uniform heating from 
below by assuming that equal and constant temperature gradients existed along both 
boundaries of a shallow, horizontal fluid layer (cf. Hart 1972) but that the vertical 
temperature difference was non-zero. By taking the horizontal gradient to be small, 
it  was shown analytically that the resulting thermally driven shear flow stabilized 
the Rayleigh-BBnard convection problem for stress-free and perfectly conducting 
boundaries. In  particular it was demonstrated that the preferred mode of disturbance 
depended crucially on the Prandtl number. 

In  the present paper we follow Weber (1973, hereafter referred to as I) and consider 
the general linear stability problem for stress-free as well as rigid (no-slip) boundary 
conditions. It should be emphasized that the assumptions behind this model differ 
from the experimental conditions of Koschmieder (1 966) and Berkovsky & Fertman 
(1970). In  particular, our vertical temperature gradient is independent of the lateral 
co-ordinate, while this is not so in the cited experiments. This makes direct comparison 
inappropriate. In  fact, a completely suitable experiment may be difficult to design, 
especially for large values of G. 

Three independent parameters define the stability problem: a Prandtl number, a 
vertical Rayleigh number and a horizontal Grashof number (the aspect ratio = 
depthlwidth is assumed to be zero). The marginally stable solutions, in which the 
horizontal wavenumbers are taken to be those which minimize the Rayleigh number, 
will then be confined to a surface in a three-dimensional parameter space. This means 
that a complete analysis of the linear stability problem would require vast amounts 
of computer time. To restrict the problem we have approached it by investigating 
how an increasingly stronger horizontal temperature gradient modifies the ordinary 
Rayleigh-BBnard problem. The Prandtl number is allowed to vary from zero to 
about ten, covering most values encountered in geophysical or astrophysical fluid 
dynamics (when defined in terms of the molecular or customarily chosen eddy 
coefficients). 

The Prandtl number again turns out to have a very interesting effect on the stability 
problem, particularly in determining the form of the fastest-growing disturbances. 

Besides calculating the stability curves we have also considered the energy balance 
for the marginally stable solutions. It is shown that this in some cases may provide 
a clue to the reason why a certain type of disturbance is preferred. 
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2. Basic flow 
The basic model to be investigated is the same as in I. The fluid is confined between 

horizontal planes a distance d apart. A Cartesian co-ordinate system (x, y ,  z )  is chosen 
such that the y axis is vertical with origin in the middle of the layer. The lateral 
temperature variation along the boundaries is taken to be linear in the x direction. 
For a given value of 2, the temperature difference AT between the planes is constant. 
We may thus write 

T = T O - i A T - / 3 x ,  T = T , + i A T - p x  

at the top and bottom plane, respectively, where p is a positive constant. The ratio 
of the height to the length of the model is assumed to be so small that lateral end 
effects do not affect the motion in the central part, i.e. the model is taken to be of 
infinite horizontal extent. 

Contrary to I, we now choose a non-dimensionalization which is appropriate for 
small and moderate Prandtl numbers. This is achieved by taking 

v l d ,  d2 /v ,  po v2/d2, v2/gyd3 (2.1) 

as units for the velocity v [ = (u, 8, w)], time t ,  pressure p and temperature T .  In  (2.1), 
v is the kinematic viscosity and y the thermal coefficient of expansion. By making 
the Boussinesq approximation, the non-dimensional governing equations may be 
written as 

a v / a t + v . v v  = - v ~ + v z v + T ~ ,  (2.2) 

(2.3) 

v.v = 0, (2.4) 

Pr(aT/at + v . V T )  = V ~ T ,  

where j is a vertical unit vector and P r  = V / K  is the Prandtl number, in which K is the 
thermal diffusivity. 

In  analogy with Hart (1972) or I, a basic solution is obtained by assuming 

I a p t  = v = w = 0, 

u = U ( y ) ,  T = T ( y ) - G x ,  

where G is a horizontal Grashof number defined by G = gypd4/v2. 
For stress-free boundaries, we obtain 

U(Y)  = $G(kY- *Y”, 

T(Y) = ~ P ~ G 2 ( ~ y - - Y 3 f ~ Y S ) - f l y ,  

where t? ( =gyATd3/v2) is a vertical Grashof number. 
For rigid (i.e. no-slip) boundaries, the equations yield 

1 V(Y) = W ( t Y  - Y3), 

T ( y )  = A P T  G2(&y - $y3 + 4y5)  - f ly .  

In  both cases the boundaries have been assumed to be perfectly conducting. 
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It should be noted, however, that in many practical cases, as in the laboratory, 
the finite length 1 of the model will impose restrictions on the validity of the solutions 
(2.6) and (2.7). Since the vertical temperature difference due to side heating can 
never exceed the temperature difference between the vertical end walls, one finds 

PrG < 0(1000Z/d), (2.8) 

while Hart (1972) reports from measurements that the basic parallel type of flow 
exists provided that 

G 5 8001/d. (2.9) 

3. Stability analysis 
On perturbing the governing equations through infinitesimal disturbances of the 

form f(y) exp {ikx + imz + wt},  where f(y) is in general complex, k and m are real 
wavenumbers in the x and z directions, respectively, and w is the complex growth rate, 
we finally obtain 

(D2-~ ' - ikGU*-w)  (D2-a:')v+ikGD2U. v - a 2 8  = 0, 

(D2 - a2- ik Pr GU, -Pro) 8 + Pr Gu + Rav - Pr2G2D@, v = 0, 

(D2 - a2 - ikGU, - w )  ( -01% + ikDv) + m2GDU, v = 0, 

(3.1) 

(3.2) 

(3.3) 

where D = d/dy, u, v and 8 are the y-dependent parts of the velocity and temperature 
perturbations, Ra = Pr 4 = g y A T d 3 / v ~  is the Rayleigh number and a: = (k2  + m2)* is 
the horizontal overall wavenumber. Furthermore we have defined 

Equations (3.1)-(3.3) are subject to  the boundary conditions 

v = D ~ v = D u = I ~ = O  at y = - + i  (3.5) 

v = D v = u = ~ = O  at y = + Q .  (3.8) 

in the free case, while rigid boundaries require 

In  I, with a different non-dirnensionalization, the equivalent system of equations 
was solved for stress-free boundaries by a perturbation technique, under the assump- 
tion of a small horizontal temperature variation. The analysis was simplified by 
approximating the exact profiles of U, and 0, by trigonometric expressions. How- 
ever, this approximation is not essential. With the exact values of 73, and @* we obtain 
closely similar results; see appendix A. 

For larger values of the parameter G in the free case and in general for rigid bound- 
aries, the stability problem must be solved numerically. Galerkin's method proves 
adequate for this purpose. The set of ordinary differential equations (3.1)-(3.3) is 
converted into a matrix eigenvalue problem for the eigenvalues w. The variables are 
expanded in N-term expansions in eigenfunctions satisfying the appropriate boundary 
conditions. Accordingly 

v = XaiXi, 8 = Cb,Y,, u = Cc,Zi,  
where 

X i  = D2Xx, = 5 = DZi = 0 at y = & 4 
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if the boundaries are taken to be stress-free and 

X i  = DXi = yi = Zi = 0 at y = -1-4 (3.9) 
in the rigid case. 

For free boundaries trigonometric functions were chosen as expansion functions, 
while polynomials were chosen in the rigid case; see Finlayson (1972, p. 154) and also 
appendix B of the present paper. Since the computations in I showed that the most 
unstable disturbances were two-dimensional with axes either normal to the basic 
flow (transverse rolls) or aligned with the basic flow (longitudinal rolls), we have 
concentrated on these two modes in the numerical computations. This seems also 
to be supported, for rigid boundaries, by the experimental results of Koschmieder 
(1966) and Berkovsky & Fertman (1970), although these may not be directly relevant 
to the present probIem. We take the view that, in the absence of any experimental 
evidence suggesting three-dimensionality of the fastest-growing disturbances, a three- 
dimensional numerical study is not as yet justified. 

By eliminating u from (3.1)-(3.3) the transverse problem gives rise to a 2N x 2 N  
matrix equation with complex coefficients. Owing to the antisymmetry of the basic 
flow, however, a simple transformation may be introduced which renders all the 
coefficients real except the complex eigenvalue; see Gallagher & Mercer (1966) or 
Hart (1970) for details. 

The longitudinal problem separates into non-combining even and odd modes, as 
may easily be seen from (3.1)-(3.3). Hence a reduction from one 3 N  x 3 N  matrix 
equation to two QN x QN matrix equations is achieved (with N chosen as an even 
number). N was chosen large enough that I w ~ + ~ - w ~ I / ) w ~ ~  < 1 and also such that 
the average energy equations balanced (see the next section), although this was not 
a very sensitive test. The convergence was found to depend very much on the Prandtl 
number and two examples are given in appendix B, tables 5 and 6. For most com- 
putations we used 14 and 7 terms in the expansions for the transverse and longitudinal 
problems respectively. 

4. Energy considerations 
Some understanding of the nature of the stability problem may be gained by 

looking at the energy balance for the perturbations. We insert the perturbed velocity 
and temperature fields into (2.2) and take the real part. By multiplying by the real 
part of the perturbation velocity, averaging over awavelength in the x and z directions, 
integrating from y = - Q to y = + 4 and using the boundary conditions, one obtains 
the familiar equation for the kinetic energy of the perturbation. 

For the special case of longitudinal rolls (a/ax = 0 ) ,  the equation splits up into 
- 

a(&(u2))/at = - G(DU, &) - ( V T )  
- -  - -  and 

a(g(v2+w2))/at = (3) - ( V V ~ + V W ~ ) ,  

while for transverse rolls ( a / &  = 0) ,  the equation reduces to 
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and 
_.  - - -  

8(+(u2 + v2))/at = - G(DU, $) + (a) - (Vu2 + Vv2), (4.4) 

or a1,p = I, + Iz + 13. 

Here the bars and brackets denote horizontal means and vertical integrations 
respectively. 

Some well-known results may be deduced from these equations. For convection 
in the form of longitudinal rolls in a shear flow which is not thermally driven (e.g. 
Couette/Poiseuille flow), the pressure does not couple the horizontal perturbation 
velocity u to the stability problem, i.e. a longitudinal roll does not ‘feel’ the effect 
of shear, and accordingly m y  instability must be of thermal 0rigin.t For given v and 
8 then, u can in principle be determined from the x component of the momentum 
equation. Energetically, it is seen from (4.1) that for marginally stable solutions the 
u component is sustained by extracting energy from the basic flow. 

For transverse rolls the presence of shear may be stabilizing or destabilizing. The 
instability is said to be of hydrodynamic origin (shear instability) if I, % I, and of 
convective (thermal) origin if I, < I,. It is important to note that, even if the basic 
instability mechanism is thermal, the preferred mode of disturbance may depend 
crucially on the shear. Since longitudinal rolls are not affected by shear, the sign of 
Il for transverse rolls will be decisive. If I, > 0, i.e. transverse rolls extract energy 
from the basic flow, this type of disturbance will be preferred, while for I, < 0, as for 
convection in Couette flow (Asai 1970), longitudinal rolls will occur. 

In the present problem, where the basic temperature field varies in the horizontal 
as well in the vertical, u, v and 8 are all coupled for longitudinal rolls, as may be seen 
from (3.1)-(3.3). To get an idea of the strength of this coupling we consider the balance 
for the square of the perturbation temperature. By taking the real part of (3.2), 
multiplying b y 9 8  and averaging and integrating as before, we obtain 

Pra(($P))/at = Pr G ( Z )  + Ra(v7) - Pr2 G2(DO* 8) - ((oe)z), 
aT,/at = T~ + T, + T~ + T ~ .  

(4.5) 

or 

The first term on the right, T,, arises from the horizontal basic temperature gradient 
and may in certain cases provide a source of buoyancy. T, is proportional to the 
conversion of potential energy from the linear part of the vertical temperature 
variation, as in the ordinary Rayleigh-B6nard problem, while T3 arises from the 
vertical temperature distribution associated with the Hadley circulation. Since DO* 
is negative near the boundaries and positive in the middle of the layer, this term may 
be stabilizing or destabilizing. It should be noted that in the case of insulating bound- 
aries DO* > 0 everywhere, and therefore this term does not contribute to instability. 
The last term in ( 4 4 ,  T4, is always stabilizing, and may conveniently be termed 
thermal dissipation. 

Since the temperature in (3.2) represents buoyancy, the physics behind (4.5) is 
quite similar to that behind (4.4), except that no shear effect is present and viscous 
dissipation is replaced by thermal dissipation. These equations will both be referred 
to  as energy equations. 

t If nonlinear effects are included, however, the development of a longitudinal roll and the 
associated growth of the u component in turn change the total basic velocity profile, so that this 
may become unstable t o  transverse disturbances; see Ellingsen & Palm (1975) for a discusson of 
the inviscid case. 
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FIGURE 1. R, = (Rae- R,)/Ga us. Pr for free boundaries and G < 100. I, longitudinal steady rolls 
(even mode) ; 11, transverse steady rolls. The broken line for transverse rolls represents the 
analytical result (A 2), while the analytical result for longitudinal rolls is indistinguishable from 
the numerical one for G < 10. 

FIGURE 2. Critical wavenumber 0s. Prandtl number for free boundaries 
and G < 100. I, longitudinal rolls; 11, transverse rolls. 
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Pr I ,X 102 I , x  102 I , x  lo* Tl T2 T ,  T4 
0.01 -0.005 0.557 -0.552 0*0001 3.6998 -0  - 3.6999 
0- 1 - 0.005 0.556 - 0.551 0.0025 3.7037 - 0-0015 - 3.7046 
1 -0.011 0.553 -0.542 0.138 4.046 - 0-152 - 4.032 

10 -0.011 0.197 -0.186 5.272 12.705 - 5-509 - 12.468 

TABLE 1. Energy balance at G = 100 for marginally stable 
transverse rolls and free boundaries. 

Pr TI T.9 T* T4 
0.01 - 0.0097 3.7092 -0  - 3.6995 
0.1 - 0.0927 3.8842 -0.0016 - 3.7899 
1 - 0.8239 5.0203 - 0.1689 - 4.0304 

10 - 4.53 26-98 - 9.48 - 12.96 

TABLX 2. Thermal balance at B = 100 for marginally stable 
longitudinal rolls (even modes) and free boundaries. 

5. Numerical results 
Free boundaries 

Some of the results are presented in figures 1-5. It proves convenient, at least for small 
values of G, to define the quantity R, = (RaC - Ro)/G2, where R, is the critical Rayleigh 
number for convection in the absence of shear. It is then easy to  compare the numerical 
and analytical results, since, for sufficiently small G ,  R, will be independent of G and 
vary with the Prandtl number only. 

In  figure 1 results for free boundaries have been plotted for various values of 
G < 100. The computations showed that, for a given value of Pr, for longitudinal 
rolls R, was practically unchanged when G was increased up to 10, while for transverse 
rolls R, was constant up to about G = 100. For G 5 10, the figure shows that the 
numerical results differ very little from the analytical expression (A2). Since the 
most unstable linear perturbation, i.e. the one that corresponds to the smallest critical 
Rayleigh number, is expected to dominate the motion at slightly supercritical Rayleigh 
numbers also, suppressing the growth of other unstable modes, we conclude that for 
values of G up to about 10 transverse rolls will be preferred when 0.04 < Pr < 5.2, 
while longitudinal rolls will occur outside this range. For larger values of G ,  R, increases 
less rapidly with Pr for longitudinal rolls, as demonstrated by the curve for G = 100. 
Hence the transverse region tends to  decrease, and at G = 100 longitudinal rolls take 
over for Pr 2 3.7. Further, the computations showed that the marginally stable 
disturbances did not propagate relative to the boundaries, and it was found that the 
even longitudinal mode was always more unstable than the odd mode. 

In  figure 2 we have displayed the critical wavenumber as a function of the Prandtl 
number for G = 10 and G = 100. The results show a marked tendency towards an 
increase in wavelength for transverse rolls for increasing Pr and G ,  while the wave- 
length for the longitudinal modes decreases. 

We have also calculated the energy balances (4.4) and (4.5) for the marginally 
stable solutions. The results presented in tables 1 and 2 have been obtained for 
G = 100. 
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FIGURE 3. Critical Rayleigh number ws. Prandtl number for free boundaries and G = 1000. I, 
transverse steady rolls; 11, longitudinal oscillatory rolls (even mode) ; 111, longitudinal steady 
rolls (odd mode); IV, longitudinal steady rolls (even mode); V, transverse oscillatory rolls. 

For longitudinal rolls the shear effect formally decouples from the buoyancy as far 
as the kinetic energy is concerned. This makes the numerical values of the balancing 
terms in (4.1) and (4.2) rather insignificant, and they will not be stated here. The 
balance in (4.5), however, yields the values given in table 2. 

The first thing to note from tables 1 and 2 is that Il = - G(DU,G)  is negative, i.e. 
transverse rolls always lose energy to the basic flow through the shear mechanism. 
We further observe that the term T3 = - Pr2G2(D0,%> in the thermal balance is 
stabilizing for transverse as well as longitudinal rolls, which means that for this value 
of G the Hadley circulation just brings warm fluid above cold fluid and thus stabilizes 
the layer in the vertical. We note that the potential energy term TI = P r G ( z )  
always acts in a destabilizing sense for transverse rolls but is stabilizing for longitudinal 
rolls. For some Prandtl numbers this destabilizing effect seems to override any 
stabilizing tendency caused by the shear, which may explain why transverse rolls 
occur in a certain range of Prandtl numbers. 

It is also obvious why longitudinal rolls are preferred for sufficiently small Prandtl 
numbers in the free case. In  the limit Pr = 0 the temperature equation (3.2) reduces 
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to that of ordinary convection without shear. Also, for longitudinal rolls with k = 0, 
the shear term in the momentum equation (3.1) vanishes. Accordingly the critical 
Rayleigh number will be the same as for ordinary convection, i.e. 

For transverse rolls in the limit Pr = 0 the shear effect is still stabilizing, and accord- 
ingly Rag,,,, > R,. 

For larger values of G the stability picture becomes more complicated. As an 
example we have considered G = 1000; see figure 3. Since by definition 

we see that for a Prandtl number of order unity the horizontal and vertical temper- 
ature gradients would be of the same order of magnitude if instability began at the 
critical Rayleigh number corresponding to ordinary Rayleigh-B6nard convection. 

Oscillatory modes will now be the most unstable ones. For Pr < 3.4 a longitudinal 
oscillatory even mode will be preferred, and we note that the critical Rayleigh number 
has a local minimum near Pr = 1 where 0 < Rac < R,. At this point the various 
terms in the thermal balance (4.5) have the following values: 

TI = 4.584, T2 = 0.369, T3 = - 1.140, T4 = - 3.813. (5.1) 

We observe that Tl = P r G ( a }  is bhe dominating destabilizing term, which means 
that the horizontal temperature gradient in this case provides a sufficient source of 
buoyancy for convection to occur. 

For Pr > 3.4 it  is seen that transverse oscillatory rolls will take over, and for 
Pr > 4-55 instability will occur even if the layer is uniformly heated from the top, 
i.e. when Ra < 0. If we choose Pr = 5 the terms in the energy balances (4.4) and (4.5) 
turn out to be 

Il = 0.004 x I, = 0.149 x I3 = -0.153 x (5.2) 

T 1 -  - 0.3, T2 = -11.4, T3 = 130.9, T4 = -119.8. (5.3) 
and 

Since here Il < 12, the instability is of thermal origin. From the thermal balance we 
observe that the dominant destabilizing term is T3 = - Pr2 G2(DO* vT), implying that 
instability now arises from the vertical temperature distribution associated with the 
Hadley circulation, 

Equivalently, we may define a lateral Rayleigh number Ra, = Pr G. From figure 3 
we then find that when the vertical Rayleigh number Ra is zero transverse oscillatory 
rolls will become unstable when Ra, 2 4550. 

In  figure 4 we have plotted the critical wavenumbers €or the marginally stable 
modes. The decrease in wavelength for unstable transverse oscillatory rolls when 
Pr > 3.5 again emphasizes the fact that the main source of buoyancy is not uniformly 
distributed throughout the layer, but confined to certain parts. In  figure 5 we have 
plotted the phase speed for marginally stable disturbances. For comparison we have 
also displayed the maximum speed of the basic flow for G = 1000, and it is seen that 
the disturbances always travel with a velocity less than Urnax. 
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FJGTRE 4. Critical wavenumber 2)s. Prandtl number for free 
boundaries and C? = 1000. Curves 88 in figure 3. 

Pr 

FIGURE 5. Phase speed ws. Prandtl number for the marginally stable oscillatory modes displayed 
in figure 4. V, transverse rolls; 11, longitudinal rolls (even mode). The broken line at the top 
represents the maximum speed of the basic flow. 

Rigid boundaries 

Some results for rigid boundaries are shown in figures 6-1 I .  No significant change in 
R, = (Rac - R,)/G2 was found for G < 100 for either type of disturbance. From figure 
6 we observe that transverse rolls now occur for all Prandtl numbers less than 1-75 
when G < 100, while longitudinal rolls take over when Pr > 1-75. Up to G = 100 the 
critical wavenumbers were not found to vary much with increasing Pr and G, but 
there was still a slight tendency towards an increase in wavelength for transverse 
rolls and a decrease for longitudinal rolls. 

Jn tables 3 and 4 we have displayed the values of the various terms in the energy 
balances for the marginally stable solutions at G = 100. 

We observe from table 3 that I, 0 when Pr is small, i.e. shear now has a de- 
stabilizing effect on transverse rolls. In figure 7 we have plotted R, as a function of Pr 
in this region. For small values of Pr, R, did not vary significantly with G for G < 1000, 
and we find that R, < 0, i.e. Rac < R,, when Pr Q 0.12. 
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Pr .I,x102 I a X  loa I ~ X  lo2 T I  Ta T, T, 
0.01 0.0002 0.5123 -0.5125 -0 8.7473 -0 - 8.7473 
0.1 0.0002 0.5122 -0.5124 0.0001 8.7480 -0.0004 - 8.7477 
1 - 0-0002 0.51 17 - 0.51 16 0.0365 8.8208 - 0.0381 - 8.8192 
10 -0.0034 0.4656 -0.4622 3.62 15.22 - 3.45 - 16.39 

TABLE 3. Energy balances at B = 100 for marginally stable 
transverse rolls and rigid boundaries. 

Pr T I  T, T, T4 

0.01 - 0.0007 8.7479 -0 - 8.7472 
0.1 - 0.0074 8.7550 - 0.0004 - 8.7472 
1 - 0.0739 8.8679 - 0.0381 - 8.7559 
10 0.817 15.112 -4.168 - 10.127 

TABLE 4. Thermal balance at a = 100 for marginally stable 
longitudinal rolls (even mode) and rigid boundaries. 

I000 

100 

* 
0 

pi 
X 

I (  

0. I 1 
Pr 

10 

FIGURE 6. R, = (RaC-RR,)/B9 m. Pr for rigid boundaries and B < 1000. I, longitudinal steady 
rolls (even mode) ; 11, transverse steady rolls; 111, transverse oscillatory rolls; IV, longitudinal 
stectdy rolla (odd mode). 
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FIGURE 7. R, = (Rae-RR,) /G2 vs. PT for rigid boundaries and small Prandtl numbers. I, longi- 
tudinal steady rolls (even mode); 11, transverse steady rolls. 
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FIGURE 8. Critical wavenumber vs. Prandtl number for rigid 
boundaries and G = 1000. Curves as in figurs 6. 

From the preceding discussion we note that the effect of shear acts in opposite ways 
for free and rigid boundaries in the limit of small Prandtl numbers. This is obviously 
due to the different forms of the two basic velocity profiles (2.6) and (2.7).  In the free 
case U, is very well approximated by a sine profile with half a wavelength between the 
bounding planes (see I), while for rigid boundaries U, is close to a sine profile with one 
full wavelength between the planes. Now it has been shown by Lin (1945), and more 
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FIQURE 9. Critical Rayleigh number w. Grashof number for Pr = 6.7 and rigid boundaries. I, 
longitudinal steady rolls (odd mode); 11, transverse steady rolls; 111, longitudinal steady rolls 
(even mode) ; IV, transverse oscillatory rolls. 

0 1 2 3 
G X  1 0 - 3  

FIUURE 10. Critical wavenumber w. Graahof number for Pr = 6.7 
and rigid boundaries. Curves as in figure 9. 

explicitly by H~iland (1.953), that an inviscid shear laow with a harmonic velocity 
profile with less than half its profile wavelength between the planes is stable to 
transverse infinitesimal disturbances. This is so even though the velocity profile 
satisfies the Rayleigh-Fjmtoft criterion. Hence a stabilizing tendency should be 
expected for transverse rolls in the free case and a destabilizing tendency in the 
rigid case. This should be so particularly in the limit of small Pr, when advection of 
momentum is increasingly important. 
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20 30 40 50 
R ~ X  1 0 - 3  

0 10 20 30 
R~ x 10-3 

FIGURE 11. Growth rate w, us. Rayleigh number for Pr = 6.7 and rigid boundaries. (a) G = 1000: 
I, longitudinal steady rolls (odd), m = 5.9; 111, longitudinal steady rolls (even), m = 6.8; IV, 
transverse oscillatory rolls, k = 5.7. (b)  G = 2000: I, longitudinal steady rolls (odd), m = 8.4; 111, 
longitudinal steady rolls (even), m = 8.2; IV, transverse oscillatory rolls, k = 7-6. 

For larger values of G the Prandtl number range containing transverse rolls tends to 
decrease, as may be seen from figure 6 for G = 1000. Up to this value of G oscillatory 
modes were never found to be the most unstable. We further note that for Pr 2 5.8 
the odd longitudinal mode is more unstable than the even mode. Calculating the 
thermal balance (4.5) for the marginally stable odd mode when Pr = 10 and G = 1000, 
we find 

TI = 0.06, Tz = 2.67, T3 = 6.87, T4 = -9.60. (5.4) 

The large positive value of T3 shows that odd modes use very efficiently the unstable 
regions near the upper and lower boundaries. 

From figure 8 we observe that the critical wavenumber for marginally stable 
longitudinal rolls increases markedly with Pr. For Pr = 10 the critical wavenumber 
for the odd mode is 7.2, i.e. the cell size is less than half that found in ordinary 
Rayleigh-B6nard convection. This again stresses the importance of the regions near 
the boundaries in the energy conversion process. 

Finally we have performed some computations for rigid boundaries and fixed 
Prandtl number. We have chosen Pr = 6-7, which mayprove adequate for comparisons 
with (future) laboratory experiments. The marginal-stability curves and critical 
wavcnumbers have been displayed in figures 9 and 10. We observe from figure 9 that 
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longitudinal steady rolls are preferred for all G except 600 5 G 5 1000, where trans- 
verse oscillatory rolls occur. In  particular we note that for Ra = 0, i.e. no uniform 
heating from below, longitudinal rolls are more unstable than transverse rolls, which 
is contrary to the results reported by Hart (1972).  In appendix B, table 6 ,  eigenvalues 
and energy balances for slightly unstable disturbances are displayed for Pr = 6.7.  In 
particular we note that the energy balance for transverse rolls converges rather slowly. 
This is due to the broad spectrum of the coefficients in the expansions (3 .7) ,  which 
implies that a large number of terms have to be retained. However, errors involved in 
the matrix manipulations also begin to appear, so there is no point in adding more terms. 

For this Prandtl number we find that the lateral advection of heat through the 
term TI = Pr G < a >  does not play an important role in the stability problem. When 
G is small, instability is governed by heating from below, while, a t  larger G, the vertical 
temperature gradient associated with the Hadley circulation is the dominating 
destabilizing effect. 

We have also computed some growth rates w, for unstable disturbances when 
Pr = 6.7 in the rigid case. The results are displayed for G = 1000 and G = 2000 
(figure 11). It is seen from the figures that w, is a linear function of Ra in the region 
considered. Defining ARa = Ra -Rae, where Rae is the critical Rayleigh number for 
the particular mode in question, we find that, for G = 1000, w, = 14.3ARa/Rae for 
transverse rolls (IV in figure 11 a) ,  while for G = 2000, w, = O-6ARa/RaC for longi- 
tudinal rolls (I11 in figure 11 b ) .  This should be compared with the result 

w, = 2.6ARa/RaC, 

which we obtain for the ordinary Rayleigh-B6nard problem (G = 0) ,  when Pr = 6-7 
and ARa/RaC is not too large (less than 1, sa.y); see also Finlayson (1972, p. 163). 

6. Summary and concluding remarks 
We have examined theoretically the stability of a thermally driven parallel flow 

uniformly heated from below. The earth’s rotation has not been taken into account, 
and the horizontal boundaries have been assumed to be perfect conductors of heat. 
Numerical computations have been performed for stress-free as well as rigid boundaries. 

For free boundaries and relatively small values of the non-dimensional horizontal 
temperature gradient G the critical Rayleigh number is always larger than that 
corresponding to  convection without shear. When 0.04 < Pr < 5.2 transverse rolls 
minimize the Rayleigh number, i.e. they constitute the preferred mode of disturbance, 
while longitudinal rolls occur outside this region. These results are consistent with the 
analytical results reported in I. It may be concluded that a series-expansion solution 
with G as a ‘small ’ parameter is valid at; least up to G N 10. 

For larger values of G oscillatory modes will be the most unstable. Thus for G = 1000 
longitudinal oscillatory rolls occur when Pr < 3.4. In  particular, the critical Rayleigh 
number has a local minimum near Pr = 1, where Rae < R,. In this case the main 
source of buoyancy is shown to arise from the basic horizontal temperature gradient. 
When Pr > 3.4 transverse oscillatory rolls will constitute the most unstable mode, 
and for Pr > 4.55 convection will occur even if the layer is heated from the top. It is 
shown that the vertical temperature distribution associated with the Hadley circula- 
tion is responsible for the breakdown of stability in this case. 
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For rigid boundaries, which is the most relevant case for comparison with laboratory 
experiments (but not always when applied to the atmosphere or the ocean), we find 
that transverse rolls are preferred for small Prandtl numbers. This is shown to arise 
from the fact that shear is destabilizing for small Prandtl numbers in the rigid case. 
It is found, however, that for both free and rigid boundaries the basic instability 
mechanism is of thermal origin for the cases considered in this paper. 

For sufficiently large values of G instability associated solely with the Hadley 
circulation will dominate also when the boundaries are rigid as demonstrated by the 
present calculations for Pr = 6-7. Other examples are the results obtained by Birikh 
(1966) for the special case Pr = 0 and Ra E 0, where the instability is pure shear 
instability, and by Hart (1972) for Pr + 0 and Ra = 0. In  the latter case instability is 
shown to be of thermal origin when Pr > 0.05. For the special case Ra = 0 and Pr = 6.7 
the present analysis shows that longitudinal rolls are more unstable than transverse 
rolls, which is contrary to  Hart’s results. It is hoped that future analysis and/or 
experiments may help to  sort out this discrepancy. 

Let us for a moment return to the problem analysed by Birikh (1966). By assuming 
that Pr = 0,  i.e. that the fluid is an infinitely good conductor of heat (which might 
have some relevance to  astrophysics, where the effective thermal conductivity is 
often greatly enhanced by radiation), and also taking Ra = 0,  buoyancy drops out 
of the perturbation problem. Accordingly the inclination of the layer to the vertical 
does not matter. The system of equations (3.1)-(3.3) reduces to the familiar Orr- 
Sommerfeld equation with a cubic velocity profile. In  the rigid case the flow may 
become unstable when G reaches a certain critical value, as shown by Birikh (1966). 
The present calculations give G, = 7931 for kc = 2.69, which is close to the values 
7968 and 2.6 deduced from Birikh’s paper. 

We have also investigated the analogous problem for free boundaries. A wide range 
of wavenumbers and G’s have been considered, and only eigenvalues with negative 
real parts were found. This clearly supports the conclusion from inviscid theory in 
Q 5 that the velocity profile U ,  given by (2.6), is stable. 

Finally, we once again emphasize what should be evident by now, namely that even 
small horizontal temperature gradients introduce new and interesting features into 
the stability problem of a fluid uniformly heated from below. Since these situations 
frequently occur in geophysics, the problem is of fundamental importance, although 
one should keep in mind that the parameters G and Ra (defined with conventional 
eddy values) in many problems may be very much larger than the values considered 
here. It is nevertheless hoped that the present investigation will shed some light on a 
very complicated problem. 

This work was initiated while the author was visiting the Department of Applied 
Mathema-tics and Theoretical Physics, University of Cambridge (UK) on a NATO- 
Science Fellowship granted by the Royal Norwegian Council for Scientific and 
Industrial Research. 
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Appendix A. Analytical solution for small G and free boundaries 
Let the solutions for the free case be expanded in powers of G ,  which is assumed to 

be small. The zeroth-order system is then identical with the ordinary Rayleigh- 
BBnard problem. The first-order system, with the exact expressions for U, and 0*, 
essentially reduces to a set of coupled ordinary inhomogeneous differential equations 
with variable coefficients. This system is relatively easily solved analytically by 
Galerkin's method. The solvability condition for the second-order problem then yields 
a correction to the critical Rayleigh number RaC. We finally obtain 

RaC = 2;n4 + G2R, + O(G4), 1 
kc = ko+O(G2),  m, = mo+O(G2),j 

where 

and 
R, = 10-3{2-75Pr2 + (0.128 + 0.156Pr + 0-638Pr2) ki + 3-49Pr m:} 

ki+m: = in,. 

On using the fact that the non-dimensional horizontal temperature gradient /3 in I 
is by definition given by P r  GlRa, inspection of (A 1) shows that the present result 
obtained with the exact U, and 0, differs very little from the equivalent one in I. It 
is seen from (A 2 )  that transverse rolls (k, = n- /JZ,  mo = 0) are preferred when 
0.039 < P r  < 5.19, while longitudinal rolls (k ,  = 0, m, = 77/42, occur when Pr < 0.039 
or Pr > 5.19. 

(A 2 )  

Appendix B. Trial functions and truncation levels 
For free conducting boundaries the trial functions in (3 .7)  were chosen ae, follows: 

x = y =  (cos nny, n odd,) 
sin nny, n even, n n  

sinnn-y, n odd, 

For rigid conducting boundaries we assumed trial functions of the form 

n =  1 , 2 , 3  ,..., 
x, = v, yn-y y2 - &)2, 

Y, = 2, = T,y"-l(y2-&), 

where V,  and T, are weighting factors chosen such that 

(XL}  = 1, ( Y i )  = I, (B 4 )  

i.e. convergence is associated essentially with the values of the coefficients a,, b, 
and c ,  in (3 .7 ) .  

To indicate truncation levels we have displayed the eigenvalues and energy balance 
for slightly unstable disturbances when P r  = 1 and P r  = 6.7 in tables 5 and 6 .  
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Free boundaries 
transverse rolls 
Ra = 9000 

k = 0-9 

Free boundaries 
longitudinal 
rolls (even) 
Ra = 1000 
m = 1.4 

Rigid boundaries 
transverse rolls 
Ra = 3700 

k = 2.9 

Rigid boundaries 
longitudinal 
rolls (even) 
Ra = 4300 
m = 4  

N 
2 
4 
6 
8 

10 

1 
2 
3 
4 
5 

2 
4 
6 
8 

10 
12 
14 

1 
2 
3 
4 
5 
6 

wr 

1.4552 
2.3708 
2.3708 
2-3708 
2.3708 

0.9104 
0.6439 
0!6427 
0.6426 
0.6426 

2.5168 
2.6320 
2.6790 
2.6821 
2,6822 
2.6822 
2.6822 

5.9592 
6.2893 
6.2702 
6.2713 
6.2713 
6.2713 

mi 
0 
0 
0 
0 
0 

22.9305 
24.1113 
24.1138 
24.1139 
24.1139 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

aT,/at 

0.6128 
0.9420 
0.9420 
0.9420 
0.9420 

0.2276 
0.1695 
0.1667 
0.1666 
0.1666 

1-6179 
1.4614 
1.4266 
1.4197 
1.4185 
1.4184 
1.4184 

2-9796 
2-9967 
3.0784 
3-1080 
3.1089 
3-1089 

Ti + T, + T, + T d  

0.6128 
0.9420 
0.9420 
0,9420 
0.9420 

0.2276 
0.1695 
0.1667 
0.1666 
0.1666 

1.6179 
1.4614 
1.4266 
1.4197 
1.4185 
1.4184 
1-4184 

2-9796 
2-9967 
3.0784 
3-1080 
3.1089 
3.1089 

TABLE 5. Eigenvalues and energy balance (4.5) for c f  = 1000 and Pr = 1. 

Rigid boundaries 
longitudinal 
rolls (even) 
Ra = 4500 
m = 8.4 

Rigid boundaries 
longitudinal 
rolls (odd) 
Ra = 4500 
m = 8.4 

Rigid boundaries 
transverse rolls 
Ra = 18000 
k = 7.7 

N 

4 
5 
6 
7 
8 
9 

10 
11 
12 

3 
4 
5 
6 
7 
8 
9 

10 
11 

8 
10 
12 
14 
16 
18 
20 
22 

@r 

0.6305 
0.81 14 
0.8045 
0.8086 
0.8086 
0.8086 
0.8086 
0.8086 
0.8086 

0.5886 
0,4221 
0.4564 
0.4583 
0.4583 
0.4583 
0.4583 
0.4583 
0.4583 

1.1977 
0.5071 
0-49 16 
0.5036 
0.5086 
0.5090 
0.5090 
0.5090 

wi 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

107.054 
107.744 
107.699 
107-687 
107-682 
107-682 
107.682 
107.682 

aT,/at 

0.1993 
0.0996 
0.1233 
0.1576 
0.1656 
0.1468 
0.1637 
0.1677 
0.1677 

0.2250 
0.2267 
0.0888 
0.0379 
0.041 1 
0.0488 
0.0521 
0.0526 
0.052 1 

0.7999 
0.0598 
0-0123 
0.0092 
0.0026 
0.0005 
0.0002 
0*0001 

Ti + T, + T s  + T 4  

0.1993 
0.0996 
0.1233 
0.1576 
0.1656 
0-1468 
0.1637 
0.1677 
0.1677 

0.2250 
0.2267 
0.0888 
0.0379 
0.0411 
0.0488 
0.0521 
0.0526 
0.0521 

0.7999 
0-0598 
0.0123 
0.0092 
0.0026 
0.0005 
0.0002 
0*0001 

TABLE 6. Eigenvalues and energy balance (4.5) for G = 2000 and Pr = 6.7. 
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